Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(8): e1009689, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383745

RESUMO

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Assuntos
Pegada de DNA/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Zea mays/genética , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Reguladores de Transcrição , Sequenciamento Completo do Genoma
2.
Data Brief ; 20: 358-363, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30175199

RESUMO

Presented here are data from Next-Generation Sequencing of differential micrococcal nuclease digestions of formaldehyde-crosslinked chromatin in selected tissues of maize (Zea mays) inbred line B73. Supplemental materials include a wet-bench protocol for making DNS-seq libraries, the DNS-seq data processing pipeline for producing genome browser tracks. This report also includes the peak-calling pipeline using the iSeg algorithm to segment positive and negative peaks from the DNS-seq difference profiles. The data repository for the sequence data is the NCBI SRA, BioProject Accession PRJNA445708.

3.
Plant Signal Behav ; 12(4): e1311437, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28375043

RESUMO

Recent advances in replicative DNA labeling technology have allowed new ways to study DNA replication in living plants. Temporal and spatial aspects of DNA replication programs are believed to derive from genomic structure and function. Bass et al. (2015) recently visualized DNA synthesis using 3D microscopy of nuclei at three sub-stages of S phase: early, middle and late. This addendum expands on that study by comparing plant and animal DNA replication patterns, by considering implications of the two-compartment model of euchromatin, and by exploring the meaning of the DNA labeling signals inside the nucleolus. Finally, we invite the public to explore and utilize 300 image data sets through OMERO, a teaching and research web resource for visualization, management, or analysis of microscopic data.


Assuntos
DNA de Plantas/fisiologia , Cromatina/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA de Plantas/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...